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Thermal non-equilibrium processes in partially ionized plasmas can be most accurately modeled

by collisional-radiative kinetics. This level of detail is required for an accurate prediction of the

plasma. However, the resultant system of equations can be prohibitively large, making multi-

dimensional and unsteady simulations of non-equilibrium radiating plasma particularly

challenging. In this paper, we present a scheme for model reduction of the collisional-radiative

kinetics, by combining energy levels into groups and deriving the corresponding macroscopic rates

for all transitions. Although level-grouping is a standard approach to this type of problem, we

provide here a mechanism for achieving higher-order accuracy by accounting for the level

distribution within a group. The accuracy and benefits of the scheme are demonstrated for the

generic case of atomic hydrogen by comparison with the complete solution of the master rate

equations and other methods. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4849417]

I. INTRODUCTION

The ability to model plasma flows with non-equilibrium

chemistry plays an important role in a number of applica-

tions including but not limited to plasma propulsion,1

high-speed reentry flows,2 plasma-assisted combustion and

interpretation of laser diagnostics.3 In order to better under-

stand the physical characteristics of the flow and the cou-

pling with chemistry under the conditions of interests, one

needs to accurately model all the non-equilibrium processes

associated with the atoms and molecules (e.g., excitation,

ionization, and dissociation) through collisional and radiative

interactions.4–6 The most accurate treatment for these non-

equilibrium plasmas requires a state-to-state approach,7–13

also referred to as collisional-radiative (CR) models, in

which deviations from the equilibrium distribution of the in-

ternal states can be captured.

These CR models, although very accurate from a

physics point of view, can be computationally very expen-

sive due to the large number of internal states for which the

number densities must be computed. For an atomic plasma,

these states correspond to all the electronic excitation levels

of the various neutral and ion species considered. For a mo-

lecular plasma, additional degrees of freedom such as the

rotational and vibrational modes further increase the level of

complexity. In addition, these molecular degrees of freedom

are strongly coupled to the chemical reactions. For example,

vibrational excitation facilitates dissociation or other endo-

thermic reactions, and recombination can also favor the

production of excited states. These models, derived from ab
initio cross section databases for all elementary processes,

can be applied to a wide range of plasma conditions and

offer more complete insight into the non-equilibrium effects.

For example, a recent study of ionizing shocks in Argon by

Kapper and Cambier10,11 demonstrated that this level of

detail is needed for an accurate prediction of high-speed

flows. In addition, the unsteady coupling of the hydrodynam-

ics and CR kinetics leads to physical phenomena which can,

in turn, provide additional information useful for model

validation and/or experimental measurements of various

parameters.

Due to the large computational workload involved in

solving the CR master equations, simulations incorporating

state-to-state kinetics have only been limited to zero- or one-

dimension with a few exceptions of two-dimensional calcu-

lations.11,14,15 For example, the run-time for solving a set of

rate equations for the CR kinetics of atomic hydrogen scales

as the cubic power of the size of the atomic state distribution

function (ASDF) when an implicit, backward-Euler method

is employed. While better scaling laws could be obtained

with iterative and more approximate schemes, their accuracy

and stability for extremely stiff problems are still an issue.

The development of very efficient and accurate schemes for

CR kinetics is still an ongoing research topic which will be

presented elsewhere; here, we discuss a different approach,

consisting of lowering the complexity of the calculations by

developing a reduced-order kinetic model suitable for multi-

dimensional flow calculations while maintaining a sufficient

level of detail required to accurately model the plasma.

Several mechanism reduction schemes have been proposed

in the literature with applications to various types of kinetics.

Colonna et al.16 utilize a two-level distribution model to

study nitrogen dissociation rates in recombining flows, in

which all the vibrational levels except for the last level are

modeled by a single energy equation with an assumption of a

Boltzmann distribution, and the last vibrational level is mod-

eled using state-to-state kinetics to take in account the non-

equilibrium effects of the upper states. Magin et al.17 have
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developed a rovibrational collisional (RVC) coarse-grain

model to characterize the internal energy excitation and dis-

sociation processes of nitrogen flow behind a strong shock

wave. The coarse-grain model is derived by lumping the

rovibrational energy levels into groups, in which the

population is described by a uniform distribution. Guy

et al.18 proposed a multi-internal-temperatures models for a

vibrationally non-equilibrium flow, in which the vibrational

distribution is divided into two or three groups, each with its

own vibrational temperature. Liu et al.,19 on the other hand,

proposed a mechanism reduction to CR models based on the

multi-group maximum entropy principle with the constraints

being the macroscopic parameters.

In this paper, we examine several different level group-

ing schemes for the state-to-state kinetics of atomic elec-

tronic states. The first approach is similar to that of Magin

et al.17 for the rovibrational collisional coarse-grain model

and therefore is based on uniform (U) binning of the levels.

The second approach here consists of grouping levels into

groups with an assumed Boltzmann (B) distribution, allow-

ing a higher-order description of the ASDF. In this case, the

effective excitation temperatures are evolved in time by con-

serving a set of moments of the distribution function; the

most obvious solution is to solve for number density and

energy, similar to the approach by Guys et al.18 However,

we will show that a different set of moment variables of the

same order should be used, due to the specific nature of the

ASDF.

The method developed here can be applied to a wide

range of state-to-state kinetics models including the

RVC13,17 and vibrational9 collisional (VC) models or the

electronic collisional-radiative model.8,10–12,20 In the interest

of simplicity, we consider here the CR model of atomic

hydrogen, using classical models for the level energies and

rates; the actual values of these parameters are unimportant

here, as long as the structure of the ASDF is representative

of the actual species, notably the geometric progression of

the level energies of the ASDF and the stiffness ratio. The

level grouping techniques are applied to reduce the cost of

solving the full master equations and the results are com-

pared with the reference solution computed from the full

master equations.

The rest of the paper is organized as follows: we

describe the state-to-state kinetics and numerical solution in

Sec. II, while in Sec. III we describe the various mechanism

reduction methods. We compare the results of the reduced-

order models with the full set of master equations in Sec. IV

and examine the issue of energy conservation in Sec. V.

Finally, a summary is given in Sec. VI, while the derivation

of the kinetic rates used in this study is given in Appendix.

II. COLLISIONAL-RADIATIVE MODEL

A. Definitions and rates

As mentioned above, we consider here the ASDF of

atomic hydrogen coupled to electron impact excitation and

ionization, and the reverse processes (respectively, deexcita-

tion and recombination), as well as the radiative rates for

line transitions in an optically thin approximation. Radiative

recombination is neglected and all radiation absorption is

ignored, as is free-free (Bremsstrahlung) emission, since this

does not directly affect the atomic level populations.21 The

atomic states of the hydrogen atom are listed as a function of

their principal quantum number (n) only, following the Bohr

atomic model; the splitting of states with respect to orbital

and spin numbers is ignored, and all states have a degeneracy

gn¼ 2n2. The states number from n¼ 1 to 1 and we con-

sider a finite number of states n¼ 1, …, M<1 before

reaching the ionization limit.22 In this simplified model, the

energy of each state is given as En ¼ IH 1� 1=n2
� �

, as meas-

ured from the ground state (E1� 0), and we will denote by

In ¼ IH 1=n2 � 1=M2
� �

’ IH=n2 the energy required for ioni-

zation of level n.

The population density Nn is the number of atoms per

unit volume of a state n. For a single bound-bound transition

between states n and m (m> n) induced by electron-impact

collisions, the rate of change of the population density is of

the form

dNn

dt
¼ �ae

ðmjnÞNnNe þ be
ðnjmÞNmNe: (1)

Hereafter, we will use the convention of indexing the rates

with the final state on the left, and the initial state on the

right, i.e., ðf jiÞ. The first term on the right of Eq. (1)

describes the loss due to excitation from level n to m, as a

result of collisions between free electrons (of number density

Ne); the second term describes the gain due to collisional

deexcitation from the state m, with number density Nm. Note

that for the same transition between the levels n and m, we

also have

dNm

dt
¼ þae

ðmjnÞNnNe � be
ðnjmÞNmNe: (2)

If there were only two states to consider, Eq. (1) would be

the entire rate of change for level n, but since all transitions

involving the state n must be counted, the rate of change for

excitation and deexcitation alone involves summing up the

right hand side over all levels m 6¼ n. At equilibrium

(Boltzmann), the ratio of population densities is

N�m
N�n
� BnmðTeÞ ¼

gm

gn
e�DEnm=kTe ; (3)

where DEnm ¼ Em � En is the difference in level energies.

For electron-impact processes, the rates a and b in Eqs. (1)

and (2) are functions of Te and are given by Eqs. (A9a) and

(A9b) in Appendix. For low values of the energy gaps

between levels (DEnm=kT � 1), both forward (a) and back-

ward (b) rates become very large. This leads to a wide range

of time scales as the number of levels is increased, and to a

considerable stiffness in the system of equations. For exam-

ple, Figure 1 demonstrates the increase in both the maximum

eigenvalue (inverse time scale) and the spread of values, i.e.,

stiffness, as the plasma evolves as function of time.

Additionally, Eqs. (A9a) and (A9b) show that the system is

strongly diagonally dominant, in the sense that transitions

with small changes in quantum number (m� n ’ 1) have a
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higher rate than those with m� n� 1. In fact, a fairly good

approximation here could be to consider a ladder process,

i.e., transitions between neighboring states only, but this is

not necessarily applicable to other atomic configurations,

and this approximation is not used here.

For ionization and recombination processes, the rate of

change of the population density for level n is

dNn

dt
¼ �ae

ðþjnÞNnNe þ be
ðnjþÞNþN2

e : (4)

The first term on the right side is the loss due to ionization of

that level by electron collisions (Ne), while the second term

is due to the capture by an ion (Nþ) of a free electron (one

factor of Ne), in the presence of a second electron (leading to

an N2
e dependence), required for energy conservation. The

equilibrium for ionization and recombination (Saha) involves

a different relation

NþNe

Nn

� ��
� SnðTeÞ ¼

gþ
gn

2
2pmekTe

h2

� �3=2

e�In=kTe ; (5)

where gþ is the degeneracy of the ion ground state (for

atomic hydrogen, gþ� 1). Thus, we cannot assume that the

equilibrium values are the same for both excitation/deexci-

tation and ionization/recombination processes. Usually, we

can have Boltzmann equilibrium (3) without Saha equilib-

rium, but hardly the reverse, mostly because it takes

more energy to ionize than to excite; for the upper states

close to the ionization limit (n� 1), the difference is less

significant.

Only the radiative transitions between atomic levels

(“line,” or “bound-bound” emission) are considered here.

For each bound-bound transition m! n (m> n), we have

dNn

dt
¼ þAðnjmÞNm; (6)

dNm

dt
¼ �AðnjmÞNm: (7)

B. Master equations

Once all the macroscopic rates are obtained, we can con-

struct the master equations describing the collisional-

radiative kinetics of all levels. In this study, we consider

atomic hydrogen, which has only one ion state, and only

electron collisions, which allows us to remove the super-

script e in the rate definition hereafter. The rate of change of

the population density of a level n is thus written as

dNn

dt
¼ �

X
m>n

aðmjnÞNeNn þ
X
m>n

bðnjmÞNeNm þ
X
m>n

AðnjmÞNm

þ
X
m<n

aðnjmÞNeNm �
X
m<n

bðmjnÞNeNn �
X
m<n

AðmjnÞNn

�aðþjnÞNeNn þ bðnjþÞNþN2
e : (8)

Similarly, we can write another equation for the rate of

change of the population density of the ions according to the

rate of ionization or recombination

dNþ
dt
¼
X

n

aðþjnÞNeNn �
X

n

bðnjþÞNþN2
e : (9)

Finally, the electron density is related to the ion density by

the charge neutrality condition

Ne ¼
X

q

ZqNq: (10)

We will compute the time evolution of a uniform plasma; if

we assume a constant temperature bath, the conservation

equations above constitute a complete set, but for constant-

volume conditions—with time variation of the tempera-

ture—there is also conservation equation for the electron

energy, which will be examined in more detail in Sec. V.

The task of deriving a reduced model for the CR kinetics

aims at modeling the shape of the ASDF at a lower computa-

tional cost compared to that required to solve the full master

equations, while maintaining sufficient accuracy to capture

the non-equilibrium effects. The most natural way to accom-

plish this is to partition the excited states into groups or

“bins,” therefore reducing the number of variables in the sys-

tem. Various assumptions can be made about the internal

structure of each group, i.e., the distribution of states within
the groups, and various approaches to solving the group-

based variables can be devised.

C. Numerical solution

Examination of Eqs. (8) and (9) reveals that the full sys-

tem of ODEs can be written in the following form:

dXp

dt
¼ �Jp � Xp þ

X
q

KpqXq p; qf g 2 1;…;M; 1þ
� �

;

(11)

where Xp is the p-element of the vector of conserved

variables—for the set of master equations (8), Xp�Np—and

Jp, Kpq are matrices built from summation over all possible

transitions between levels, and are themselves functions of

FIG. 1. Spectrum of eigenvalues of the CR system versus time, during con-

stant-Te plasma evolution from a low-temperature ASDF and low electron

number density; as excitation and ionization proceed, the upper states and

Ne increase, yielding a rapid growth of the characteristic frequencies.
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Xp. Thus, the source term can generally be decomposed into

a linear and non-linear terms. The system (11) can be solved

using a variety of techniques. In this study, we have used a

backward Euler scheme to avoid the stiffness of the CR

kinetics. Expanding the general system (11)

dXp ¼ �ðJp þ dJpÞ � ðXp þ dXpÞ

þ
X

q

ðKpq þ dKpqÞðXq þ dXqÞ (12)

and retaining 1st-order terms only, we obtain

Apr � dXr ’ �Jp � Xp þ
X

q

Kpq � Xq (13)

with the Jacobian

Apr ¼ ð1þ JpÞdpr �Kpr þ Xp
@Jp

@Xr

� �
�
X

q

Xq
@Kpq

@Xr

� �
:

(14)

For this implicit method, there is no stability restriction on

the time step. For consistency, all the simulations shown in

this paper utilized a constant time step. The same solution

methodology is applied to the various cases of level group-

ings, where now some of the conserved variables in the set

{Xp} are summations over the levels within the groups/bins,

while in the general case of non-isothermal plasma, it also

includes the electron energy Ee.

III. LEVEL GROUPING STRATEGIES

A. Uniform grouping

Consider a group of M individual levels

i ¼ fn0;…; nM�1g, abbreviated as i 2 n and denote the

group, or “bin” number by n; hereafter, n, m,… are the group

indices and i, j,… are level indices. This first approach to

model reduction is essentially a zeroth-order approximation

of the internal23 distribution function, where only one

moment variable, either the total number density of the

group or the total excitation energy of the group, is required.

The traditional choice is to conserve the total number density

of the group, i.e., N n ¼
P

i2n Ni. Using Eq. (3), a Boltzmann

approximation of the internal partition function Zn is

obtained by24

N n ¼ Nn0

X
i2n

Ni

Nn0

’ Nn0

gn0

X
i2n

gie
�DEi=Tn

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Zn

; (15)

where DEi ¼ Ei � En0
is the difference in energy between

the level i and the first level of the group, n0. The approxima-

tion of a group with uniform internal distribution is equiva-

lent to having a characteristic group temperature Tn

approaching infinity, compared to the total energy width of

the group, i.e.,

Zn ! gn ¼
X
i2n

gi; (16)

where gn is the overall group degeneracy. The simplest

model therefore consists of assuming all levels within the

group to be distributed uniformly, i.e., weighted by the level

degeneracy

Ni ¼
gi

gn
N n: (17)

The rate equation for a group n is obtained by summing the

master rate equations (8) and (9) for all the levels i within

the group, and utilizing relation (15)

dN n

dt
¼�NeN n

X
m>n

X
i2n

gi

gn

X
j2m

aðjjiÞ þ
X
m<n

X
i2n

gi

gn

X
j2m

bðjjiÞ

" #

þNeN m

X
m<n

X
i2n

X
j2m

gj

gm
aðijjÞ þ

X
m>n

X
i2n

X
j2m

gj

gm
bðijjÞ

" #

�N n

X
m<n

X
i2n

gi

gn

X
j2m

AðjjiÞ

" #
þN m

X
m>n

X
i2n

X
j2m

gj

gm
AðijjÞ

" #

�NeN n

X
i2n

gi

gn
aðþjiÞ

	 

þN2

e Nþ
X
i2n

bðijþÞ
	 


: (18)

Similarly for the ion state, one obtains

dNþ
dt
¼ Ne

X
n

N n

X
i2n

gi

gn
aðþjiÞ

	 

� N2

e Nþ
X

n

X
i2n

bðijþÞ
	 


:

(19)

The terms within brackets in Eqs. (18) and (19) contain

effective rates for the groups, which can be pre-computed.

For example, in the first term on the right-hand-side of

Eq. (18)

~aðmjnÞ ¼
X
i2n

gi

gn

X
j2m

aðjjiÞ

is an effective excitation rate from group n to group m. Note

that since this model does not require computing an excita-

tion temperature Tn, all the effective transition rates between

the groups can be expressed as a function of the kinetic tem-

perature Te only. It is important to emphasize that the group-

ing of levels is applied on the high energy states only; thus in

any simulation we must choose a number of low-energy,

“resolved” levels, as well as a variable number of groups

combining the upper states. The number of discrete states,

the number of groups and their widths are variable parame-

ters of the model, whether we use uniform binning as above,

or Boltzmann internal distributions, discussed below. In

order to bound this parameter space (optimization is beyond

the scope of the present work), we need to provide a refer-

ence solution, such that the population density of each level

can be compared to the one reconstructed from the assumed

internal distribution within each group. Figure 2 shows the

evolution of the electron density computed from the master

equations. This test corresponds to a strong ionization regime
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and the time evolution of the ASDF shows an increasing

population of the higher atomic levels while the electron

density grows exponentially. It also demonstrates the effect

of the number of levels included in the simulation, i.e., using

a fewer number of atomic states has an impact on delaying

the onset of the electron avalanche. This indicates that ioni-

zation from the high-energy states is an important process,

and therefore the evolution of the upper states must be accu-

rately captured. We could always increase the size of the

ASDF to obtain higher accuracy, but with diminishing

return; ultimately, the time-resolution of interest and the ac-

curacy threshold dictate the number of levels required in a

simulation. The mapping between the practical requirements

and ASDF size is not a straightforward matter, but is an issue

beyond the scope of this work. Convergence studies

with respect to the size of the system showed that beyond

20 levels, there were no discernible differences in the

results—see Figure 2. Thus, we chose our reference solution

to be the one obtained for 20 levels, and all level-grouping

models investigated here will be based on this extent of the

ASDF.

B. Boltzmann grouping—Number and energy

Several assumptions can be made regarding a

Boltzmann-like structure within the group. Panesi et al.12

and Magin et al.25 rely on the assumption that the population

within a group follows a Boltzmann distribution at the ki-

netic temperature, i.e., in this case, Tn� Te. This approach is

only valid if the rates of exchange between the levels within

the group are much faster than the exchange rates with levels

outside the group; otherwise, one could then assume that the

entire ASDF is governed by Te and is always in Boltzmann

equilibrium. The validity of this assumption is highly ques-

tionable for atomic state populations.26 Furthermore, when

different collision partners must be considered, the kinetic

temperature can be either that of the heavy particles or the

electrons (e.g., electron-impact excitation and heavy impact

quenching); in this case, choosing either one of the kinetic

temperature can impact on the results.

In order to accurately describe the population of a group

with a Boltzmann distribution, two moment variables of the

ASDF need to be conserved. The selection of these variables,

however, can be arbitrary. Guy et al.18 conserved the total

number density of the group and the average excitation

energy; these, respectively, correspond to zeroth- and

first-order moment variables, and would appear to be a natu-

ral choice. Consider the total number of states N n—defined

in Eq. (15)—and the total energy within the bin

En ¼
P

i2n EiNi, for which we can write conservation equa-

tions, derived from Eq. (8)

dN n

dt
¼ �NeN n

X
m>n

X
i2n

gie
�DEi=Tn

Zn

X
j2m

aðjjiÞ

"

þ
X
m<n

X
i2n

gie
�DEi=Tn

Zn

X
j2m

bðjjiÞ

#
… (20a)

dEn

dt
¼ �NeN n

X
m>n

X
i2n

gie
�DEi=Tn

Zn

X
j2m

EiaðjjiÞ

"

þ
X
m<n

X
i2n

gie
�DEi=Tn

Zn

X
j2m

EibðjjiÞ

#
… (20b)

For sake of brevity, we did not write the entire list of

contributions in Eq. (20), which can be easily derived from

Eq. (18) by generalizing the weighting factors gi/gn to

gie
�DEi=Tn=Zn, and similarly for other groups. By solving for

total number and total energy of each group, according to

Eqs. (20a) and (20b), we can guarantee direct conservation

of both mass (total number of levels N n) and energy (En).

However, this approach presents some problems in determin-

ing the internal Boltzmann temperature, as will now be

shown. First, let us define a total group/bin energy measured

from the lower bound, i.e., DEn ¼
P

i2nðEi � En0
ÞNi; the

rate of change of this shifted energy is still given by the

right-hand-side of Eq. (20b). We can then write

DEn ¼
Nn0

gn0

X
i2n

gi DEi e�DEi=Tn ¼ N nhDEin; (21)

where

hDEin ¼
1

Zn

X
i2n

gi DEi e�DEi=Tn ¼ T2
n

d

dTn
lnðZnÞ (22)

is the average group energy measured from the first internal

level. Similarly, a specific heat at constant-volume can be

determined, i.e.,

CvðTnÞ ¼
d

dTn
hDEin ¼ T�2

n

X
i2n

giðDEiÞ2e�DEi=Tn

Zn
� hDEi2n

2
4

3
5

¼ T�2
n hDE2in � hDEi2n
h i

: (23)

Since N n and En are conserved variables, we obtain new

values at each time level (k) and in order to compute the

Boltzmann temperature Tn, we need to iterate the equation

FIG. 2. Time evolution of the electron number density using different total

number of atomic levels. The electron temperature is set at 3.0 eV.
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hDEinðT�nÞ þ CvðT�nÞdT�n ¼
DEðkÞn

N ðkÞn

; (24)

where T�n is the running iterated value, until convergence

(dT�n ’ 0). However, the slope of the curve hDEinðTnÞ is

extremely flat at low temperature, i.e., Cv ! 0. In fact,

when Tn ! 0, to the leading order we have: N n ’Nn0

oð1þ �Þ; hDEin ’ oð�Þ and CvðTnÞ ’ oð�Þ, where � ¼ e�DE1=Tn

is a small parameter. Therefore, during the iterations dT�n
¼ oð�Þ=oð�Þ and arbitrary temperature solutions can be

obtained. Our studies showed that indeed, numerical instabil-

ities prevent us from obtaining satisfactory solutions in many

test cases. While it is possible to introduce limiters to prevent

unphysical or improbable values and stop the iteration coun-

ters, this is not a satisfactory solution to the problem. We

should also emphasize that the problem occurs when Tn is

small, which does not imply that electronic levels are unpopu-

lated, since we may very well have small internal group tem-

peratures as a result of initial conditions or running iterations,

but non-negligible overall electronic excitation (N n 6¼ 0).27

C. Boltzmann grouping—Partitioning

In the approach above, we are dealing with two reduced

variables N n and En (or DEn) which are both summations

over the internal levels. An alternative may consist of keep-

ing one of the level populations as a variable. Therefore, we

could instead choose for each group n to conserve the popu-

lation of the lowest level in that group Nn0
and N n, whose

evolution is given by a form similar to Eq. (20a). To evaluate

the Boltzmann temperature of the group, we now have at

time step (k), from Eq. (15):

N ðkÞn ¼
NðkÞn0

gn0

X
i2n

gie
�DEi=Tn ¼

NðkÞn0

gn0

ZnðTðkÞn Þ

so that in order to evaluate the new bin temperature TðkÞn we

need to solve

ZnðT�nÞ þ
dZn

dTn

� �
dT�n ¼

N ðkÞn

N
ðkÞ
n0

gn0
(25)

until convergence. Using Eq. (22), this leads to

dT�n ’
T�2n

ZnðT�nÞhDEinðT�nÞ
N ðkÞn

N
ðkÞ
n0

gn0
� ZnðT�nÞ

" #
; (26)

where, again, the dependencies on temperature have been ex-

plicitly written. At low Tn, the denominator is oð�Þð1þ �Þ
and the numerator is a difference between two terms of

o(1þ �). Therefore, the iterative procedure is again numeri-

cally unstable.

To attempt to alleviate this problem, we have examined

yet another approach: for each group n we conserve the pop-

ulation of the lowest level in that group Nn0
and N 0n, the total

population of the remaining upper states n0 of that group,

such that n ¼ n0 [ n0. This is an effective partitioning within

the group, which allows us to separate the variables, one of

o(1) and the other of o(�). Clearly, we have now

N 0n ¼
Nn0

gn0

X
i2n0

gie
�DEi=Tn

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Z0n

using Ni ¼
N 0n
Z0n

gie
�DEi=Tn :

(27)

In order to evaluate the new temperature from the two con-

served variables, we iterate on dT�n using a form similar to

Eq. (25)

Z0nðT�nÞ þ
dZ0n
dTn

� �
dT�n ¼

N 0ðkÞn

N
ðkÞ
n0

gn0
: (28)

However, it is easy to see that since d
dTZ

0 � d
dTZ, we obtain

a similar equation to Eq. (26):

dT�n ’
T�2n

Z0nðT�nÞhDEinðT�nÞ
N 0ðkÞn

N
ðkÞ
n0

gn0
�Z0nðT�nÞ

" #
:

In the same limit Tn! 0, both numerators and denominators

are of o(�) and the temperature iterations are again unstable;

this was verified through extensive tests under a variety of

conditions and configurations. To avoid this systematic nu-

merical problem, we must consider another way to evaluate

the Boltzmann temperature inside each group.

Consider instead the following expansion of the parti-

tion function near the mean relative energy value

DEn ¼ 1
gn

P
i2n giDEi. Defining di � DEi � DEn as the

shifted energy gap, we have

ZnðTnÞ ¼
X
i2n

gie
�DEi=Tn ¼ e�DEn=Tn

X
i2n

gie
�di=Tn

¼ e�DEn=Tn

X
i2n

gi 1� di

Tn
þ 1

2

d2
i

T2
n

þ � � �
" #

’ gne�DEn=Tn 1þ oðhd2i=T2
nÞ

h i
; (29)

where gn is the total degeneracy—see Eq. (16). Therefore,

up to second-order in the approximate ratio of the bin width

to the temperature, the partition function can be approxi-

mated by a single exponential function and the relation (29)

can be inverted. If we use the ðNn0
;NÞ pair of conserved var-

iables, we have

N ðkÞn

N
ðkÞ
n0

g0 ¼ ZnðTðkÞn Þ ’ gne�DEn=T
ðkÞ
n : (30)

However, the left-hand-side of Eq. (30) is o(1þ �), and the

right-hand-side should be as well. To see that this is the case,

consider the first terms in the expansion of Eq. (29)28

ZnðTnÞ ’ e�DEn=Tn g0e�ðDE0�DEnÞ=Tn þg1e�ðDE1�DEnÞ=Tn þ�� �
h i

:

Since DE ’ DE1 and DE0� 0, the right-hand-side is

oð�Þ½oð1=�Þ þ 1þ � � �� ’ oð1þ �Þ. Again, this is not a
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desirable situation, since the evaluation of the group temper-

ature Tn is of the form 1=lnð1þ �Þ, and is subject to signifi-

cant errors. Furthermore, by computing the average gap DE
from the lower-bound of the energy bin, the requirement

hdi � Tn may be hard to justify at low group temperature.

Instead, we can take advantage of the self-similar struc-

ture of the atomic spectrum (exact for hydrogen, approxi-

mate for other atoms) and the fact that the energy gaps

become narrower as the level index increases. Thus, let us

define the average energy counting from the first level above
the lowest level, as obtained from Z0n, defined in Eq. (27)

Z0n ¼
X
i2n0

gie
�DEi=Tn ¼ e�DE0 n=Tn

X
i>n0

gie
�d0i=Tn : (31)

By definition of the mean, the first-order term in the expan-

sion of the exponential on the right-hand-side should be:P
i2n0 gid0i ¼ 0, where now d0i � DEi � DE0n . This yields

DE0n ¼
1

g0n

X
i2n0

giDEi with g0n ¼
X
i>n0

gi: (32)

Therefore, DE0 differs from DE only by a normalization fac-

tor, since DE0� 0. Note that DE0 > DE1 and to lowest-order,

Z0ðTnÞ ’ g0ne�DE0=Tn ’ oð�Þ. Using the conserved pair

ðNn0
;N 0Þ, the group temperature is now estimated by

N 0ðkÞn

N
ðkÞ
n0

gn0
¼ Z0nðTnÞ ! TðkÞn ’�

DE0n

ln
N 0n
g0n

gn0

Nn0

" #’� 1

lnð�Þ :

(33)

This is now a stable computation when � ! 0. Furthermore,

the approximation hdi � Tn is more justifiable since the

largest value (d0 ¼ En0
� DE) is removed from the average.

We see that we now have the means to compute the in-

ternal group temperature from conserved variables without

risking fatal numerical errors; this is possible only by sepa-

rating the lowest and upper levels within the group, i.e., by

performing a sub-scale, internal partitioning of the group.29

This is the approach used here for the last Boltzmann (here-

after denoted as B5) group we investigated, for which the

appropriate pair of conserved variables to use is therefore

ðNn0
;N 0nÞ. Note that it is also possible to improve on the

temperature evaluation by incorporating all higher-order

terms into the definition of the total degeneracy, i.e.,

Z0nðTnÞ ¼ ~g0nðTnÞe�DE0n=Tn

! dZ0n
dTn
¼ Z0nðTnÞ �

DE0n
T2

n

þ d

dTn
ln ~g0n

" #
: (34)

If T�n is the running iteration, first evaluated by Eq. (33), suc-

cessive estimates of TðkÞn are obtained, using Eq. (34), from:

TðkÞn � T�n ¼
lnZ0nðTðkÞn Þ � lnZ0nðT�nÞ

dlnZ0n
dTn

	 

ðT�nÞ

where

Z0nðTðkÞn Þ ¼ gn0

N 0ðkÞn

N
ðkÞ
n0

: (35)

This iterative procedure can rapidly converge (as demon-

strated in our tests) because we have an excellent approxima-

tion of the initial temperature from the lowest-order direct

evaluation (33), and the o(�) term has been factored as the

leading term in the expansion. In other words, ~g0nðTnÞ is a

smooth function of temperature with a non-vanishing gradi-

ent, allowing gradient-descent iterations.

D. Boltzmann grouping—Effective rates

As before, the master equations are used to derive the

conservation equations for the two new variables ðNn0
;N 0nÞ,

by setting i¼ n0 for the first one, and summing over all levels

j 2 n0 in the second case. The latter yields the following:

dN 0n
dt
¼ �NeN 0n

X
m>n

X
i2n0

gie
�DEi=Tn

Z0n

X
j2m

aðjjiÞ þ
X
m<n

X
i2n0

gie
�DEi=Tn

Z0n

X
j2m

bðjjiÞ

" #

þNeN m

X
m<n

X
i2n0

X
j2m

gje
�DEj=Tm

Zm
aðijjÞ þ

X
m>n

X
i2n0

X
j2m

gje
�DEj=Tm

Zm
bðijjÞ

" #

�N 0n
X
m<n

X
i2n0

gie
�DEi=Tn

Z0n

X
j2m

AðjjiÞ

" #
þN m

X
m>n

X
i2n0

X
j2m

gje
�DEj=Tm

Zm
AðijjÞ

" #

�NeN 0n
X
i2n0

gie
�DEi=Tn

Z0n
bðn0jiÞ þ

X
i2n0

gie
�DEi=Tn

Z0n
Aðn0jiÞ

" #
� NeN 0n

X
i2n0

gie
�DEi=Tn

Z0n
aðþjiÞ

" #
þ N2

e Nþ
X
i2n0

bðijþÞ
	 


: (36)

Note that we have used the total number N m ¼ Nm0
þN 0m

and the group total partition function Zm ¼ gm0
þZ0m in the

expressions on the right hand side, only as a way to group

terms and lead to simpler expressions; the conserved

variables remain Nm0
and N 0m. Equation (36) takes in

account all the interactions between the groups, assuming

the Boltzmann distribution approximation within each group.

The effective rates for group transitions can be expressed
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(and tabulated) as a function of two temperatures: the kinetic

temperature Te and the group excitation temperature Tn.

Notice also that because of the bin-averaging, the effective

radiative transition rates have also become temperature-

dependent (Tn).

Similarly, the rate of change of the number density of

the ground state of each group is

dNn0

dt
¼ �NeNn0

X
m>n

X
j2m

aðjjn0Þ þ
X
m<n

X
j2m

bðjjn0Þ
	 


þNeN m

X
m<n

X
j2m

gje
�DEj=Tm

Zm
aðn0jjÞ

"

þ
X
m>n

X
j2m

gje
�DEj=Tm

Zm
bðn0jjÞ

#
� Nn0

X
m<n

X
j2m

Aðjjn0Þ
	 


þN m

X
m>n

X
j2m

gje
�DEj=Tm

Zm
Aðn0jjÞ

" #

þNeN 0n
X
i2n0

gie
�DEi=Tn

Z0n
bðn0jiÞ þ

X
i2n0

gie
�DEi=Tn

Z0n
Aðn0jiÞ

" #

�NeNn0
aðþjn0Þ½ � þN2

e Nþ bðn0jþÞ
� �

: (37)

Again, using the total number of levels N m ¼ Nm0
þN 0m on

the right-hand-side allows us to consider together transitions

between lowest states at the boundaries of different groups

(Nn0
� Nm0

), as well as the transitions with the excited sub-

partitions (Nn0
�N 0m) and simply the expressions. Since the

ion is conserved here as an individual state, the rate of

change of its number density remains the same but can be

rewritten in terms of the group number densities

dNþ
dt
¼ Ne

X
n

N n

X
i2n

gie
�DEi=Tn

Zn
aðþjiÞ

" #

� N2
e Nþ

X
n

X
i2n

bðijþÞ
	 


: (38)

Each term in brackets in Eqs. (36)–(38) is an effective rate for

transfer between the group variables ðNn0
;N 0nÞ; 8n. As men-

tioned in Sec. III A, both individual levels and groups (uni-

form or Boltzmann) are considered when solving the ASDF.

The few individual states are the lowest in the energy scale,

with the largest successive gaps, while the multitude of upper

levels is distributed into a variable number of groups. This is

justified on the basis of the kinetic rates (see the stiffness

ratios of Figure 1), and as justification of the expansion (29).

IV. ACCURACY OF UNIFORM AND BOLTZMANN
METHODS

A. Isothermal ionization test case

In the previous section, we have discussed several

approaches to the level grouping strategy; these are summar-

ized in Table I. This sequence of models was developed as a

result of preliminary tests and the failure to obtain converged

solutions for the group Boltzmann temperature Tn in many

instances. Thus, we found that the only model which was

able to provide stable and satisfactory solutions for all test

cases was model B5, using a sub-partition of the group into

the ground level n0 and the remainder, and the use of the

form (31) for the partition function, which allowed us to fac-

torize out the vanishingly small terms at low Tn. Therefore,

considerations of the “equation of state” of the Boltzmann

group dictated the correct approach to use here, and while all

the models explored are listed in Table I, only the

zeroth-order uniform binning described in Sec. III A and the

B5 models are shown here and compared to the reference so-

lution obtained from solving the full master equations; these

are indicated as (U) and (B) models, respectively.

We conducted a large number of additional tests but for

the sake of brevity, we are showing here the results of three

representative cases: the initial conditions are summarized in

Table II. For all the results shown in this section, a constant

time step of 10�7 s had been used for the test cases in the ion-

ization regime (cases 1 and 3), and a time step of 10�5 s was

used for the recombination regime (case 2); the same

backward-Euler scheme of Sec. II C was used throughout.

As indicated in Sec. III, the reference solution is based

on the detailed kinetics for 20 atomic levels, while the

group-based solutions will be based on a few low energy lev-

els individually monitored, and with partitioning of the

remaining upper states into a variable number of groups. The

first test case is the iso-thermal relaxation in the excitation

and ionization regime, i.e., the initial population of excited

states and electron density is well below equilibrium.30 This

test case is the same as the one shown in Figure 2 for a vari-

able number of electronic levels, solving for the full master

equations (8) and (9). As the plasma relaxes towards equilib-

rium, an increasing number of electronic levels become

populated and the electron number density grows exponen-

tially, until an ionization cascade occurs. The rates increase

very rapidly just before equilibrium, and the system becomes

very stiff, as shown by the large spread of eigenvalues in

Figure 1.

TABLE I. Summary of level-grouping models investigated.

Model Variables Equations Tn evaluation

U N n (18) and (19) none

B1 ðN n; EnÞ (20a), (20b), and (38) Cv—unstable

B2 ðNn0
;N nÞ (37) and (20a) Cv—unstable

B3 ðNn0
;N

0

nÞ (37) and (36) Cv—unstable

B4 ðNn0
;N nÞ (37) and (20a) Eq. (29)—unstable

B5 ðNn0
;N

0

nÞ (37) and (36) Eq. (31)—stable

TABLE II. Initial conditions of test cases. For all cases, the total atomic den-

sity NH is 1021 m–3.

Case Te xe¼Nþ/NH Nn

1 3 eV—isothermal 10–9 (1 � xe)NH for n¼ 1

10�20NH otherwise

2 1 eV—isothermal Saha (3 eV) Boltzmann (3 eV)

3 3 eV—isochoric 10�9 (1 – xe)NH for n¼ 1

10�20NH otherwise
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Figure 3 shows a comparison of the number densities of

all the atomic states for the iso-thermal test case (1). In this

simulation, the ground state and the first 4 excited states

(1,…,5) are conserved as discrete levels while the remaining

upper states (6,…,20) are partitioned into two groups, each

of which has either a uniform or Boltzmann distribution.

There are both significant and subtle differences in the traces

of the upper states. First, comparison of the uniform (Figure

3(b)) and Boltzmann (Figure 3(c)) grouping shows the influ-

ence of the assumed internal distribution, as the recon-

structed levels of the groups are clearly separated in the

uniform case. Second, comparison with the reference solu-

tion of Figure 3(a) shows that the Boltzmann groups are

clearly more accurate. Slight differences remain in the very

early stages of evolution31 below 1 ls for example and

around 10 ls.

The combined effect of the number of resolved lower

levels and grouping strategy is shown in Figure 4. Generally

speaking, one can clearly observe a dramatic improvement,

for the same number of resolved levels, by switching from a

uniform to Boltzmann group.32 By selecting the time of max-

imum rate of growth of the electron density as the approxi-

mate location of the avalanche ionization, we can measure

the relative error in density. As shown in Table III, the error

can be very substantial unless there is sufficient resolution of

the ASDF kinetics, through the number of resolved lower

levels and a higher-order (B) description of the groups. This

is important when comparing, for example, with time-gated

experimental results.

By conserving more discrete states and reducing the size

of the upper state groups, the results are of course signifi-

cantly improved. This is to be expected for ASDF kinetics,

since the energy gaps are larger for the first levels, and

grouping together these states would be less accurate, first by

yielding excessive bin energy widths compared to mean

energy and temperature scale—violating the validity condi-

tion for the expansion (29)—and also by disallowing

FIG. 3. Comparison of the time evolution of the excited states during the

isothermal heating test case (Te¼ 3 eV). From top to bottom: (a) full solution

with 20 levels; (b) solution with 5 levels and 2 uniform groups; (c) solution

with 5 levels and 2 Boltzmann groups. The first excited state—H(2)—is the

top curve, followed by the next higher level, etc.

FIG. 4. Comparison between the solution obtained using both level grouping

approaches. The solid line represents the full solution.

TABLE III. Relative error on electron density at peak rate of growth

(approximately 33 ls).

Method Error (%)

3 levelsþ 1 U-group 2618

3 levelsþ 1 B-group 89.2

4 levelsþ 1 U-group 165.8

4 levelsþ 1 B-group 23.7

6 levelsþ 1 U-group 20.9

6 levelsþ 1 B-group 0.9
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potential deviations from Boltzmann equilibrium in the most

populated range of excited states.

There can of course be variations in the grouping strat-

egy, but in all cases the general guidelines of keeping the

widths of the groups small and the levels with the largest

energy gaps as individual states are perfectly consistent with

the objective of computational cost reduction, since the dis-

crete lower energy states evolve more slowly and the upper

states are numerous and have similar energy.33

The relative accuracy of the grouping approaches can

also be seen in Figure 5 where the ASDF is plotted at four

different instances of time corresponding to t¼ 10, 20, 30,

and 40 ls. Both solutions with level grouping are obtained

from using 3 atomic levels and 1 group of upper states. It is

clearly seen that the Boltzmann group gives a more accurate

representation of the upper states distribution during the

heating process. We also showed in Figure 5 the results of a

simplified model where it is assumed (see Sec. III B) that all

groups have the same internal temperature, equal to the ki-

netic temperature, i.e., TbðnÞ � Te; 8n (dashed line). This

assumption is clearly violated, as shown in Figure 6,

although the difference remains mostly confined to the upper

states distribution. We should point out again that significant

differences would be expected in a two-temperature kinetic

system, i.e., including heavy-particle collisions.

We note also that the ASDF from the full solution indi-

cates that the high lying states, starting from the third excited

state, behave like a continuum state, although there appears

to be two distinct sub-groups among the upper states, as can

be seen most clearly at t¼ 10 ls. This suggests that the upper

states are most effectively resolved by two groups or more,

again confirming that relatively small widths of the groups

are preferable, albeit at an increased computational expense.

Figure 6 further illustrates this point by showing the evolu-

tion of the Boltzmann temperatures of the upper states, using

here 4 discrete atomic states and partitioning the upper states

into 3 groups. While the Boltzmann temperatures of the first

two groups are close to each other, the temperature of the

third group is slightly higher. This again confirms that the

upper states need to be resolved by at least 2 groups. When

the system is near equilibrium, both approaches give similar

results.

In these simulations, we have assumed that the plasma is

optically thin to all the radiation from the line transitions.

Spectral signatures being a major diagnostic tool for determin-

ing plasma conditions, it is important to know the CR kinetics

in detail in order to match experimental data. Usually, this is

accomplished by post-processing the numerical solution with

a highly resolved spectral code—including radiation transport

(RT) if necessary—with detailed computation of line shapes.

This approach is accurate if the key parameters of such a spec-

tral model, in particular Ne and Te, are also very accurate. As

discussed above and shown in Table III, our Boltzmann

grouping procedure provides a significant improvement over

conventional approaches, leading to a potentially much more

accurate spectral signature prediction in transient and non-

equilibrium plasma conditions. In addition, the ASDF solution

is much closer to the true physical state, which may also lead

to faster integration of the detailed CR kinetics with RT.

These will be investigated in the future.

Accurate evaluation of the radiative emission is also im-

portant during the computation of flow dynamics, from simple

reasons of power coupling, e.g., radiative cooling. Figure 7

shows the radiative losses due to bound-bound radiation

from the upper states (5,…,20) to the first three atomic states

(1, 2, 3) computed by grouping all the upper states together as

a single group with a Boltzmann distribution. Although this is

a somewhat coarse approximation to the ASDF, it is clear that

the grouping scheme provides an excellent approximation to

the radiative power. An accurate reproduction of the radiative

spectrum depends inevitably on the reconstructed population

of the atomic levels and, as can be seen by comparing the pro-

files in Figure 3, the agreement can be excellent.

B. Isothermal recombination test case

In this case, we performed a cooling test where the

plasma is suddenly brought down from 3 eV to 1 eV. Thus,

the simulation was run at a constant temperature (Te¼ 1 eV),

while the initial conditions are the Boltzmann and Saha equi-

librium values at 3 eV; these are exactly the conditions

which would be obtained at the end of the first test case in

FIG. 5. The internal states population during the heating process at various

times. The solid symbols are the full solution; the solid lines are the level

grouping with Boltzmann distribution; the doted lines are for level grouping

with uniform distribution; dashed lines are for a simplified model with

Tb�Te.

FIG. 6. Boltzmann temperature of the upper states.
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the absence of radiative losses. For all the simulations shown

in this case, a constant time step of 10�5 s has been used.

In this case, the cooling process occurs very rapidly and

the plasma is in a deexcitation and recombination regime;

the ground state and the electron number densities are

quickly adjusted to their new equilibrium values, as can be

seen in Figure 8. Strictly speaking, since bound-bound radia-

tion is assumed to be optically thin, the system cannot reach

equilibrium. However, a quasi-equilibrium state is achieved

at approximately 1 ms, after which the bound-bound radia-

tion is the dominant net rate of change and the system con-

tinues to cool down at the radiative time scales. Note also

that the uniform grouping is significantly less time-accurate

than the Boltzmann method, as was already the case in the

ionization regime—see Figure 4.

Figure 9 shows the evolution of the excited states as

function of time for reference, uniform groups and

Boltzmann groups. Once again, there is a noticeable discrep-

ancy between the reference solution and the uniform bin

model, especially concerning the red curve which crosses

other levels during the relaxation process. This curve is the

density of H(2), the first excited state, and is an effect of the

strong radiative decay of this state. Notice that the plot starts

at t¼ 10�5 s, i.e., the first implicit time step, but already the

solution is far from the Boltzmann equilibrium which is the

initial condition at t¼ 0, such that there is a population inver-

sion with respect to H(2) for many upper states. Notice also

that the time scale is logarithmic, and the processes consider-

ably slow down as the electron density drops significantly.

Because we are considering only electron impact collisions,

the ASDF essentially becomes “frozen” in a quasi-static but

FIG. 8. Comparison of the time evolution of the ground state and the free

electrons during the isothermal cooling process (3 eV ! 1 eV) using level

grouping with uniform and Boltzmann distribution (3 levelsþ 1 group).

FIG. 9. Comparison of the time evolution of the excited states during the

isothermal cooling test case (Te¼ 1 eV). From top to bottom: (a) full

solution with 20 levels; (b) solution with 3 levels and 1 uniform group;

(c) solution with 3 levels and 1 Boltzmann group. H(3)—is the bottom

curve, followed by the next higher level, etc.; the non-conforming red curve

is H(2). The higher population densities as the level index increases include

the increase of the level degeneracy.

FIG. 7. Radiative loss due to bound-bound radiation from the upper states to

the first 3 atomic states. The lines indicate the solution obtained from the

full CR kinetics. The dots represent solution obtained with level grouping

(5 levelsþ 1 group).
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non-equilibrium state. If collisions by heavy particles were

also considered, these would rapidly become the dominant

process, leading to faster relaxation towards equilibrium.

However, in some case of rapid plasma expansion, similar

“frozen-in” non-equilibrium distribution functions of the

ASDF could be obtained.

To better appreciate the accuracy of the Boltzmann

grouping procedure, Figure 10 shows the evolution of sev-

eral excited states compared to the exact solution and simi-

larly to the “heating” (ionization) case, excellent agreement

was obtained. In this simulation, the first 3 atomic states

(1, 2, 3) are conserved as discrete levels and the upper states

(4,…,20) are lumped into 1 Boltzmann group.

Finally, we show in Figure 11 the snapshots of the

ASDF during the recombination. Contrary to the case of ion-

ization, the upper states are not depleted but enhanced

instead—as expected, since the recombination proceeds pref-

erentially onto the upper states. As a reflection of the obser-

vation made for Figure 10, the agreement is excellent for all

atomic states.

V. ENERGY CONSERVATION

A. Effective rates

The systems of equations (18)–(19) and (36)–(38)

describe the complete evolution of the ASDF but for an iso-

thermal plasma. In the more general case, the ASDF kinetics

are coupled to the energy of the system; here, this includes

only the total energy of the free electrons Ee. Thus for

constant-volume or constant-pressure conditions, there must

be an evolution equation for the energy or enthalpy (only

constant-volume kinetics are considered here). We must then

exert care that the formulation exactly conserves energy, i.e.,

that EðkÞe þ
P

n EðkÞn at any time level (k) remains the same

within numerical round-off errors. If we were dealing with

only electron-impact collisions, it would be sufficient to sum

the energies of all levels using the new population densities

at the end of the time step, compute the difference and assign

the change to Ee. However, there are two obvious problems

with this scenario: (a) when other collision partners must be

accounted for, or when the electrons themselves are parti-

tioned (e.g., for non-Maxwellian kinetics), one must be able

to correctly apportion the changes in energy, e.g., to Ee and

Eh (for heavy particles) and (b) for large time steps, there is

no guarantee that the subsequent change in Ee is physically

acceptable, i.e., EðkÞe ¼ Eðk�1Þ
e þ dEe > 0. We must therefore

include an evolution equation for Ee (and another for Eh if

heavy particle collisions are included), which must then be

fully coupled, so that the Jacobian of the system (14)

includes derivatives of the rates with respect to Ee, through

the variation of Te.

Energy conservation can be satisfied if the construction

of the source term on the right-hand-side of the master equa-

tions also satisfies it. Thus, we must explicitly construct the

energy source term from the master equations, as was al-

ready described briefly in Eq. (20). The same procedure is

used, with the understanding that

dEe

dt
¼ �

X
n

dEn

dt
:

Thus we can combine contributions as follows:

dEe

dt
¼ �NeN n

X
m > n

i2n

gie
�DEi=Tn

Zn

X
j2m

DEjiaðjjiÞ

2
64

þ
X
m<n

i2n

gie
�DEi=Tn

Zn

X
j2m

DEjibðjjiÞ

3
775…; (39)

where DEji ¼ Ej � Ei. Note that in the case of excitation

from level jiÞ, i.e., the first summation in Eq. (39), DEji > 0,

while DEji < 0 in the second term for de-excitations from

that level. We can then construct another set of effective

rates, this time for the energy equation. Using the sub-

partitioning of model B5, the rates derived from the first

term on the right of Eq. (36) are

FIG. 10. Comparison of the time evolution of the excited states number

densities during the isothermal cooling process. The lines are full solution.

The dots represent solution obtained with level grouping (3 levelsþ 1 B

group).

FIG. 11. Snapshots of the ASDF at several times during the cooling process.

The dots represent the full solution. The solid lines are the solution obtained

using the level grouping with Boltzmann distribution. The broken lines are

the solution obtained using the level grouping with uniform distribution.
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~aE
ðm0 jn0Þ ¼

X
i2n0

gie
�DEi=Tn

Z0n

X
j2m0

DEjiaðjjiÞ

" #
; (40a)

~b
E

ðm0 jn0Þ ¼
X
i2n0

gie
�DEi=Tn

Z0n

X
j2m0

DEjibðjjiÞ

" #
: (40b)

These rates enter the evolution equation for Ee as

dEe

dt
¼ �NeN 0n

X
m>n

~aE
ðm0 jn0Þ � NeN 0n

X
m<n

~b
E

ðm0 jn0Þ þ � � � : (41)

Note that the same formulation applies for uniform groups

by taking the limit Tn!1, and summing over the complete

set n ¼ fn0; n
0g. The rate of energy change can also be

expressed as

~aE
ðm0 jn0Þ ¼ ~aðm0 jn0Þ � �eðm0 jn0Þ; (42)

where aðm0 jn0Þ is of course given by the effective rate for the

conserved number densities

~aðm0jn0Þ ¼
X
j2m0

X
i2n0

gie
�DEi=Tn

Z0n
aðjjiÞ:

Equation (42) defines an average energy �eðm0jn0Þ, transferred

during excitation of levels of group n0 to levels of group m0,
which can be tabulated as function of the initial Tn and colli-

sional (Te) temperatures. This approach was successfully

used, for example, for vibrational non-equilibrium.34

B. Isochoric ionization test case

The third test case of Table II was designed to test for

energy conservation. In this case, the energy loss and gain

due to collisional processes are taken into account in the

conservation equation for the electron energy. The evolu-

tion now proceeds at constant volume, and the electron

temperature changes rapidly, as seen in Figure 12. The ini-

tial conditions are the same as those of the first test case,

and the system is initially far below Boltzmann and Saha

equilibrium However, contrary to the isothermal case, the

initial excitation and ionization processes deplete the elec-

tron energy and the system “freezes” rapidly, and the

excited states remain at a low population density. If an

external heating source was applied (e.g., Ohmic heating),

the system would more closely resemble the isothermal test

case, and the system would become stiff again. Here, we

are mostly concerned with testing energy conservation and

to simplify the analysis, the radiative rates were removed

from the kinetics, so that no radiative energy losses were

present.

We can monitor the error by comparing the values of Ee

at the end of each time step with the total potential energy

contained in the electronic states, by reconstruction of the

level populations. Figure 13 shows both the accumulated

error (symbols) and the one at each time step (solid line);

this test was conducted with 5 resolved levels and 2

Boltzmann groups, and all computations were performed

with a constant time step of 10�10 s, using the same

backward-Euler integration scheme.35

The error is certainly acceptable, but it is not commen-

surate with numerical round-off, which we would have

expected if the scheme was exactly energy-conserving. By

comparison, the cumulative error in energy was below 10�13

when solving the full master equations without level

grouping.

While the exact solution consists of summing-up the

contributions from each individual level, leading to the rate

of change expressed by Eq. (20b). However, we are not using

here the internal energy En as a conserved variable, and we

must be careful that the procedure be consistent with our

definition, or reconstruction of the internal energy. The

corrected procedure is described next.

C. Corrected energy rates

Consider for example the change in electron energy due

to excitations and de-excitations, and let us examine first the

case of uniform grouping.

dEe

dt
¼ �

X
m>n

X
n

~aE
ðmjnÞN nNe þ

X
m>n

X
n

~b
E

ðnjmÞN mNe: (43)

FIG. 12. Ne, Te evolution in constant-volume case.

FIG. 13. Cumulative and instantaneous relative errors in energy conserva-

tion—test case 3.
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There are two formulations of the effective rates of energy

transfer:

Formulation 1:

~aE
ðmjnÞ ¼

X
j2m

X
i2n

gi

gn
ðEj � EiÞaðjjiÞ; (44a)

~b
E

ðmjnÞ ¼
X
j2m

X
i2n

gj

gm
ðEj � EiÞbðijjÞ: (44b)

Formulation 2:

~aE
ðmjnÞ ¼ ð ~Em � ~EnÞ

X
j2m

X
i2n

gi

gn
aðjjiÞ; (45a)

~b
E

ðmjnÞ ¼ ð ~Em � ~EnÞ
X
j2m

X
i2n

gj

gm
bðijjÞ; (45b)

where ~En ¼
P

i2n
gi

gn
Ei and similarly for ~Em.

Only the second formulation is exactly energy-

conserving. This is quite clear because in that case, the term

on the right side of Eq. (45) is the product of the change in

number density of the groups (dN n=dt) and the difference in

average group energy ( ~E). Energy conservation follows from

the definition of the total group energy En ¼ ~EnN n. Thus,

the model assumptions constrain us to choose the appropri-

ate formulation of the effective rates for energy change that

is consistent with the definition of group energy.

Let us now examine the case of the Boltzmann grouping

(B5), using the pair of conserved variables ðNn0
;N 0nÞ; the

rates of energy exchange must therefore be consistent with

the electronic energy defined from these two variables, and

with the equation of state used to describe the internal parti-

tion (i.e., Tn). We start with the conservation of the group

energy

dEn

dt
¼ d

dt
Nn0

En0
þN 0nhEin0

� �
¼ En0

dNn0

dt
þ hEin0

dN 0n
dt
þN 0n

dhEin0
dt

: (46)

Note that the averaging hin0 is done for the remaining levels

above the ground level n0 of that group. We can write a simi-

lar equation for the total energy measured from the ground

state of that group, i.e.,

dDEn

dt
�
X
i2n

DEi
dNi

dt
¼ d

dt
N 0nhDEin0
� �

¼ hDEin0
dN 0n

dt
þN 0n

dhDEin0
dt

: (47)

The first term in Eq. (47) describes the change in group

energy from the global change in population of the group,

i.e., hEindN n=dt. The last term describes the change of the

internal structure of the group as a result of the collisional

transitions, since

dhDEin0
dt

¼ 1

T2
n

hDE2in0 � hDEi2n0
h i

dTn

dt
¼ Cv;n0

dTn

dt
: (48)

From Eq. (31),

dZ0n
dt
¼ gn0

Nn0

dN 0n
dt
�N

0
n

Nn0

dNn0

dt

" #
¼ Z0n

DEn

T2
n

þ d ln ~g0n
dTn

" #
dTn

dt
:

(49)

Inserting into Eq. (47),

N 0n
dhDEin0

dt
¼ Cv;n0T

2
n

DE0n þ T2
n

d ln ~g0n
dTn

� � dN 0n
dt
�N

0
n

Nn0

dNn0

dt

" #
:

(50)

We can now combine with the other terms of Eq. (47) to

obtain an expression which only depends on the rates of

change of the conserved variables ðNn0;N 0nÞ. Defining

nn0 ¼
Cv;n0T

2
n

DE0n þ T2
n

d ln ~g0n
dTn

� � and xn0 ¼ nn0
N n0

Nn0

(51)

and adding the contribution from the ground state of the

group, we obtain

dEn

dt
¼ En0

� xn0½ �
dNn0

dt
þ En0

þ hDEin0 þ nn0
� � dN 0n

dt
: (52)

One can then identify the rates of change of the population

density with the effective rates. Considering transitions

between groups n and m> n, and using a similar expression

for dEm=dt, we have

~aE
ðm0jn0Þ ¼ Em0

� xm0 � En0
þ xn0½ � � ~aðm0jn0Þ

� �eðm0jn0Þ � ~aðm0jn0Þ; (53a)

~aE
ðm0 jn0Þ ¼ Em0

þ hDEim0 þ nm0 � En0
þ xn0

� �
� ~aðm0jn0Þ

� �eðm0 jn0Þ � ~aðm0 jn0Þ; (53b)

~aE
ðm0jn0Þ ¼ Em0

� xm0 � En0
� hDEin0 � nn0

� �
� ~aðm0jn0Þ

� �eðm0jn0Þ � ~aðm0jn0Þ; (53c)

~aE
ðm0 jn0Þ ¼ Em0

þ hDEim0 þ nm0 � En0
� hDEin0 � nn0

� �
� ~aðm0 jn0Þ

� �eðm0 jn0Þ � ~aðm0jn0Þ: (53d)

It is instructive to examine the limit of infinite Boltzmann

temperatures; in this case,

Zn0 ! g0n; Cv;n0 ; nn0 ;xn0 ! 0 and hDEin0 ! DE0 n

and similarly for m0. Equation (52) becomes
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dEn

dt
¼ En0

dNn0

dt
þ

X
i2n0

giEi

g0n

N n0

dt
¼ En0

dNn0

dt
þ

X
i2n0

giEi

gn0

dNn0

dt

¼

X
i2n

giEi

gn0

dNn0

dt
¼ ~En

dN n

dt
; (54)

where we have also used the fact that in that limit,

Nn0
=gn0
¼ N n=gn, and used the definition of the average

group energy—see Eq. (45). Since a similar equation is

found for dEm=dt, the combination exactly yields Eq. (45).

Thus, we have verified that by taking the limit Tn; Tm !1,

we recover the uniform group model.

For ionizations and recombinations, a similar procedure

can be found. Considering the change in electron energy due

to ionization and recombination from and to the group n, we

have

dEe

dt

�
n

¼ �
X
i2n

dNi

dt
Ii ¼ �

d

dt
hIinN n

� �
¼ �In0

dNn0

dt
� hIin0

dN n0

dt
�N n0

dhIin0
dt

; (55)

where Ii is the ionization potential for level i and hIin0 is the

group ionization potential averaged over the sub-partition n0.
Using Ii ¼ IH � Ei ¼ In0

� DEi, it is easy to see that

hIin0 ¼ In0
� hDEin0 and

dhIin0
dt
¼ �Cv;n0 : (56)

Equations (49) and (50) are still valid, and using again the

definitions (51), we obtain the final form

dEe

dt

�
n

¼ � In0
þ xn0½ �

dNn0

dt
� In0

� hDEin0 � nn0
� � dN n0

dt
:

(57)

Note the similarity with Eq. (52). The effective rates are

therefore

~aE
ðþjn0Þ ¼ In0

þ xn0½ � � ~aðþjn0Þ � �eðþjn0Þ � ~aðþjn0Þ; (58a)

~aE
ðþjn0Þ ¼ In0

� hDEin0 � nn0
� �

� ~aðþjn0Þ � �eðþjn0Þ � ~aðþjn0Þ:
(58b)

Examination of equations (53) and (58) reveals that the over-

all procedure consists of replacing the energy of the group’s

ground state n0 and sub-partition n0 by effective energies for

the energy exchange

~En0
¼ En0

� xn0 and ~En0 ¼ En0
þ hDEin0 þ nn0 : (59)

Thus, the effective rates of energy transfer become

~aE
ðm0jn0Þ ¼ ~Em0

� ~En0

� �
� ~aðm0jn0Þ; (60a)

~aE
ðm0jn0Þ ¼ ~Em0 � ~En0

� �
� ~aðm0jn0Þ; (60b)

~aE
ðm0jn0Þ ¼ ~Em0

� ~En0
� �

� ~aðm0jn0Þ; (60c)

~aE
ðm0jn0Þ ¼ ~Em0 � ~En0

� �
� ~aðm0 jn0Þ (60d)

and for ionization:

~aE
ðþjn0Þ ¼ IH � ~En0

� �
� ~aðþjn0Þ; (61a)

~aE
ðþjn0Þ ¼ IH � ~En0

� �
� ~aðþjn0Þ: (61b)

The use of effective group energies36 provides a straightfor-

ward approach, and the effective rates of energy transfer for

all transitions (including de-excitations, recombination, and

radiative transitions) can now be expressed in a simple form.

Note that Eq. (61) is similar to the case of uniform grouping

(45) and since we have already demonstrated that we can

recover the uniform grouping case in the limit of infinite

temperatures, we have achieved here a fully consistent

model.

We are now left with the task of verifying energy con-

servation with this revised approach. Using the same test

case (3), we now find a much smaller level of error, as can

be seen from Figure 14—compare with Figure 13—that is

the characteristic of the level of numerical round-off. Note

that the cumulative error sums the absolute values of the

stepwise error (L1 norm), and is therefore a maximum bound.

Figure 15 shows the effect of bin size on the relative error;

FIG. 14. Cumulative and instantaneous relative errors in energy conserva-

tion—test case 3—with revised formulation.

FIG. 15. Cumulative relative errors in energy conservation as function of

group sizes; revised formulation.
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this observation is similar to the one made regarding the ac-

curacy of the ASDF—see Figure 5, i.e., smaller group widths

are preferred. However, it is clear that even for one or two

bins, the error on energy conservation remains very small.

VI. CONCLUDING REMARKS

In this paper, we described a model reduction mecha-

nism for the collisional-radiative kinetics of the ASDF, by

grouping electronic states into groups and deriving the cor-

responding macroscopic rates to take in account all the

transitions. While level-grouping is a commonly used and

necessary procedure when dealing with a very large num-

ber of atomic levels, as in high-temperature plasma,37,38 the

procedure is commonly based on uniform grouping (i.e.,

simple average over the level degeneracies). A higher-order

description of the internal structure of the groups was

developed here by assuming a Boltzmann distribution of

the levels within the group, with different temperatures for

each group. This approach was shown here to have superior

features to the uniform grouping procedure, as summarized

below.

Numerical instabilities in the limit of low internal

temperature led us to the design of this non-traditional

approach. Instead of conserving the total energy of a

group, we used a novel approach using conserved varia-

bles from a sub-partitioning of the group between the

lowest level of that group (Nn0
) and the remaining states

(N 0n). Combined with an appropriate expansion of the

sub-group partition function, this model was able to very

rapidly determine the group temperatures in a stable and

accurate fashion for all conditions, solving a problem that

is particularly vexing for atomic collisional-radiative

kinetics, due to the structure of the energy levels of

atomic plasma.

The two grouping schemes (uniform and Boltzmann)

were implemented on an electronic collisional-radiative

model for atomic hydrogen and the results were compared

with the full solution of the master equation on a large num-

ber of numerical tests, of which a representative sub-set was

shown here. Both schemes showed agreement with the solu-

tion of the master equations and have excellent convergence

properties. However, substantial accuracy improvements

were obtained at minimal computational cost with the

Boltzmann grouping. Detailed tests of energy conservation

revealed the need for a revised approach to the construction

of effective rates of energy transfer. This was made neces-

sary because the total group energy was not part of the set of

conserved variables, and consistency requirements led us to

a new formulation involving effective level energies and av-

erage group energies between which energy exchange

occurs. We derived this new formulation and showed that it

was simple to implement, and consistent with the uniform

grouping method.

For the case of atomic hydrogen studied here, it was

sufficient to mix a few low-lying states with two

Boltzmann groups for all the high energy states and be

able to capture the correct ionization kinetics for all the

states and the radiative spectrum. This significantly

reduces the computational cost associated with solving

the kinetics and therefore can be applied in multidimen-

sional and time-resolved flow calculations, with accurate

coupling to radiative processes. The reduction schemes

presented in this work could also be applied to other set

of kinetics, e.g., rovibrational collisional and vibrational

kinetics, although in this case the levels are distributed

much more uniformly on the energy axis, in which case

reduction schemes and group temperature determination

are more straightforward. Future work includes a straight-

forward extension of the approach to non-hydrogenic and

multi-stage ionization, as well as the application of more

accurate and more efficient time integration schemes,

currently under development. Further optimization of the

scheme, such as dynamic re-partitioning, is also under

exploration.
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APPENDIX: COMPUTATION OF KINETIC RATES

The classical form of the cross-section for energy

exchange between a free electron and the atom,6 leading to

an excitation from level n to level m> n is

re
nm ¼ ð4pa2

0Þ
I2
H e� Enmð Þ

Enme2
� 3fnmð Þ; (A1)

where a0 is the Bohr radius, e is the energy of the free

electron, DEnm¼Em�En is the energy gap between n and

m and fnm is the oscillator strength

fnm ¼
32

3p
ffiffiffi
3
p 1

n5

1

m3

1

1

n2
� 1

m2

� �3
: (A2)

The free electrons are assumed to follow an isotropic

Maxwellian distribution feðeeÞ

feðeeÞdee ¼
2ffiffiffi

p
p
ðkTeÞ3=2

e1=2
e e�ee=kTe dee; (A3)

where me is the electron mass, ee ¼ mev2
e=2 and Te is the

temperature. The rate of excitation is obtained by averaging

over the distribution function

ae
ðmjnÞ ¼

ð1
Enm

re
nmðeÞvef ðveÞdve; (A4)

leading to

ae
ðmjnÞ ¼ ð4pa2

0Þ�ve
IH

kTe

� �2

ð3fnmÞwnm; (A5)

where
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�ve ¼
8kTe

pme

� �1
2

; wnm ¼
e�xnm

xnm
� E1ðxnmÞ; and

E1ðxÞ ¼
ð1

x

e�y

y
dy: (A6)

Here, �ve is the mean thermal electron velocity, xnm

¼ DEnm=kTe and E1 is the exponential integral. The reverse

rate can be found from detailed balance

be
ðnjmÞ ¼

n2

m2
eþxnm � aðmjnÞ: (A7)

We use the low temperature approximation6 (xnm � 1)

E1ðxÞ ’
e�x

x
1� 1

x

� �
; (A8)

in which case

ae
ðmjnÞ ’ 4pa2

0 �
32

p
ffiffiffi
3
p � �ve

	 

e�xnm

n5m3ðn�2 � m�2Þ5
; (A9a)

be
ðnjmÞ ’ 4pa2

0 �
32

p
ffiffiffi
3
p � �ve

	 

1

n3m5ðn�2 � m�2Þ5
: (A9b)

The factor in brackets is an upper bound, which is reached

for the upper states when xnm ! 0. Another scale is the fac-

tor IH/kTe in xnm, which is effectively responsible for the

stiffness. If that factor is very low (high temperatures), all

rates are of the same order; at low temperatures, the expo-

nential term dominates and the range of time scales is

increased.

The cross-section for ionization by electron impact has a

form similar to Eq. (A1), i.e.,

re
n ¼ ð4pa2

0Þ
I2
H e� Inð Þ

Ine2
: (A10)

This leads to an ionization rate coefficient6

ae
ðþjnÞ ¼ ð4pa2

0Þ�ve
IH

kTe

� �2

wðxnÞ: (A11)

The final state ðþj is an ionized state, i.e., where one electron

initially bound to the atom has reached the ionization limit

(n¼1) and is part of a free continuum of states. Using the

principle of detailed balance, the reverse (recombination)

rate is

be
ðnjþÞ ’

4

p
a2

0h3

m2
ekTe

" #
IH

kTe

� �2

n2wðxnÞexn : (A12)

Using the same low temperature approximation (A8), we

obtain6

ae
ðþjnÞ ’ ð4pa2

0Þ
8kTe

pme

� �1=2

n4e�xn ; (A13a)

be
ðnjþÞ ’

4

p
a2

0h3

m2
ekTe

" #
n6: (A13b)

The rates of radiative transitions between levels can also be

obtained classically for the hydrogen atom.5 The spontane-

ous emission rates from an upper level m are

AðnjmÞ ¼
8p2e2

mec3

� �
gn

gm
fnm ¼

1:6	 1010

m3nðm2 � n2Þ s
�1: (A14)

The expression on the right is for atomic hydrogen only.
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